Эффективность ранее предложенной учеными НИТУ МИСИС технологии покрытия титановых имплантатов для реконструктивной хирургии, подтверждена специалистами Национального исследовательского центра эпидемиологии и микробиологии имени почётного академика Н. Ф. Гамалеи.
Результаты in vivo испытаний показали, что после специальной обработки улучшается взаимодействие имплантата с костной тканью, его антибактериальная и противогрибковая активность. Технология не требует дорогостоящего оборудования и может проводиться непосредственно в больницах и хирургических центрах.
Одним из оптимальных и легко масштабируемых методов модификации поверхности имплантата является плазменно-электролитическое оксидирование (ПЭО), когда титановые изделия обрабатывают в электролите под высоким напряжением.
«За счет выделения газообразного кислорода из расплава во время обработки, на металлической подложке образуется микропористое оксидное покрытие, микроструктура которого лучше адаптирована к костной ткани, чем гладкий титан. Размер, форма и распределение пор по размерам тоже оказывают существенное влияние на адгезию, распространение, пролиферацию и дифференцировку клеток. Микропоры могут также служить резервуаром для загрузки различных биологически активных веществ: факторов роста, бактерицидов и др.», — говорит автор исследования Анастасия Попова, инженер научно-учебного центра самораспространяющегося высокотемпературного синтеза (НУЦ СВС) МИСИС-ИСМАН, аспирантка кафедры порошковой металлургии и функциональных покрытий Университета МИСИС.
Для улучшения биологической активности материала в процессе ПЭО-обработки в состав электролита были добавлены функциональные элементы, такие как Cu, Na, P, Ca, Si, O. По словам исполнительницы исследования, магистрантки iPhD программы НИТУ МИСИС «Биоматериаловедение» Дарьи Адваховой, медь эффективно инактивирует грамположительные и грамотрицательные бактерии, предотвращая образование вредоносных биопленок. Для ускорения образования костной ткани вокруг имплантата, ученые загрузили поверхность белком BMP-2, это наиболее изученный костный морфогенетический белок, используемый в ортопедической хирургии.
«Оценку биоактивности и биосовместимости мы проводили на модели титановых имплантатов, специально разработанных для черепа мышей. Испытания показали, что белок BMP-2 значительно ускоряет формирование новой костной ткани. Мы наблюдали выраженное ремоделирование кости, остеокондукцию и остеогенез», — сказала соавтор исследования д.б.н., профессор Анна Карягина, главный научный сотрудник лаборатории биологически активных наноструктур НИЦЭМ им. Н Ф. Гамалеи.
Хотя процесс плазменно-электролитического оксидирования относительно хорошо изучен, ученые Университета МИСИС выявили интересную структурную особенность, которая ранее подробно не обсуждалась. С помощью просвечивающей электронной микроскопии удалось выяснить, что функциональные элементы распределены не по всему объему покрытия, а сосредоточены преимущественно на поверхности в виде биостекла из-за технических особенностей процесса. Эксперимент подробно описан в международном научном журнале ACS Applied Materials & Interfaces (Q1).
«Введённые в электролит элементы Ca, P, Na, K, Si, и O определяют биоактивность имплантата за счет ионного обмена, происходящего на границе поверхности с физиологической средой. Это открытие имеет не только фундаментальное, но и практическое значение. Биостёкла представляют собой аморфные материалы, которые могут связываться как с твердыми, так и с мягкими тканями и могут быть использованы в пористых имплантатах для стимулирования адгезии и пролиферации костных клеток. Помимо этого, они растворяются со скоростью, сравнимой со скоростью образования новой костной ткани и могут быть использованы в качестве систем доставки лекарств. Подбирая режимы формирования покрытий и состав электролита, мы можем сформировать тонкий слой биостекла с необходимым для конкретного применения составом», — говорит соавтор исследования к.т.н. Константин Купцов, старший научный сотрудник НУЦ СВС МИСИС-ИСМАН.
Исследование выполнено при поддержке Российского научного фонда (№ 20-19-00120-Π) и стратегического проекта Университета МИСИС «Биомедицинские материалы и биоинженерия» в рамках программы Минобрнауки России «Приоритет 2030» под руководством д.ф.-м.н. Дмитрия Штанского, главного научного сотрудника НУЦ СВС МИСИС-ИСМАН.